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Abstract.

Studies of fisheries bycatch often result in data that are characterized by a smooth 
distribution of positive amounts of per-set bycatch, but with an extremely large number of 
zero observations. This discontinuity at zero is difficult to fit with a standard distribution. 
One approach is to model per-set bycatch with a mixture of two distributions, with one 
component representing the zero observations and the other representing the observations 
of positive bycatch. In this report, we describe such a mixture model that is suitable when 
the bycatch observations have been rounded to integer amounts. In particular, when 
“rounded” zeros (representing small amounts of bycatch) and “true” zeros (representing 
no bycatch) are indistinguishable in the data, the mixture model can be used to estimate 
the proportion of each.

We fit this model to tuna bycatch data collected by observers aboard the U.S. tuna 
purse-seine fleet in the eastern tropical Pacific Ocean during the years 1989-1992. We use 
the model to estimate bycatch per set, and allow the model parameters to depend upon one 
or more covariates. We then show how to estimate mean bycatch per set fishery-wide, by 
summing out over those covariates. Extensions and limitations are discussed.

1. Introduction.

Many fisheries catch, in addition to the target species, unwanted but unavoidable 
individuals of other, non-target, species. This “bycatch” of unwanted individuals is 
generally discarded, and in many fisheries, few, if any, individuals survive their capture 
and discard. Estimating the extent of such bycatch is becoming increasingly important as 
fisheries managers more often have to contend with situations where unwanted individuals 
from a fishery include individuals which are desirable in other contexts. Bycatch in one 
fishery may include juvenile members of the target species in the same or another fishery, 
or individuals from threatened, endangered or protected species. For example, juvenile 
mackerel are caught and discarded, and sea turtles caught and drowned, by shrimp
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trawlers in the Gulf of Mexico (e.g., Collins and Wenner, 1988; Caillouet et al., 1991). 
Sharks, billfish, and juvenile tuna are caught by tuna purse-seiners in the eastern tropical 
Pacific Ocean (e.g., Au, 1991). Numerous tropical fish species are caught by shrimp 
trawlers around islands in the south Pacific Ocean (e.g., Kulbicki and Wantiez, 1990). 
Various prohibited species are captured as bycatch in the Bering Sea domestic trawl 
fisheries (Berger et al., 1989). These are only a few of the numerous fisheries plagued 
with bycatch.

Although of increasing interest, the amount of bycatch generated by various fisheries 
remains relatively unstudied. Bycatch is generally discarded without being weighed or 
measured exactly; few fisheries routinely estimate or measure bycatch in any form. 
Because complete data are most often lacking, bycatch usually must be estimated rather 
than reported directly (e.g., Berger et al., 1989). One particularly troublesome problem in 
bycatch estimation is developing a statistical model that is sufficiently flexible to account 
for a variety of data types, so that bycatches can be compared from different 
circumstances.

The U.S. tuna purse-seine fishery in the eastern tropical Pacific Ocean (ETP) presents 
such a problem, but, in contrast to many other fisheries, also provides an opportunity to 
develop a solution to the problem, because information on bycatch of tuna (including both 
non-target tuna species and juveniles of target species) has been collected from the fishery 
since 1988.

A flexible approach is required to model tuna bycatch from this fishery because the 
purse-seine vessels capture fish using three distinctly different fishing strategies: “log 
fishing”, “school fishing” and “dolphin fishing”. Log fishing is the practice of catching 
fish by making purse-seine sets on tuna associated with floating objects. These sets 
usually capture schools of small yellowfin tuna (Thunnus albacares) or mixed schools of 
small yellowfin and like-sized skipjack tuna (Katsuwonus pelamis). School fishing is the 
practice of capturing schools composed purely of (usually small) tuna (again, either pure 
schools of yellowfin or mixed schools of yellowfin and skipjack), located by surface 
disturbances created by the schools. Dolphin fishing is the practice of catching tuna 
located by surface disturbances created by closely associated dolphins (e.g., Orbach 
1977). Tuna associated with dolphins almost always consist of pure schools of large 
yellowfin. Log fishing generates large amounts of tuna bycatch, very frequently (with 
almost every set). School fishing generates moderate amounts of tuna bycatch much less 
often. Dolphin fishing generates small amounts of tuna bycatch, and only very 
infrequently. Thus, tuna bycatch data from dolphin fishing are characterized by many zero 
observations, while data from log fishing contain mostly non-zero observations. School 
fishing presents an intermediate case.

We develop here a method for modelling bycatch per set for these three disparate 
types of bycatch data, and show how to use the model to estimate mean bycatch per set for 
each set type. The focus of the present study is development and description of the model 
as a solution to a common problem in bycatch estimation. Detailed results of applying the
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model, and its implications for the U.S. tuna purse-seine fishery in the ETP, are the subject 
of another paper (Edwards and Perkins, in preparation).

We first describe the general characteristics of the available by catch data, and then fit 
a statistical model to those data to investigate some of the factors affecting the amount of 
tuna bycatch per set. We define an appropriately flexible probability distribution to 
describe the observed data, then use likelihood methods to select relevant covariates and 
compute parameter estimates for that distribution. Finally, we use those values to estimate 
mean bycatch per set, both as a function of geographic location and fishery-wide, for each 
set type. The specific applications and results presented here address only tuna bycatch in 
the ETP purse-seine fishery, and do not include bycatch of other species (e.g., marine 
mammals, billfish, sharks, sea turtles). However, the method presented here is generally 
applicable to any situation involving analysis of data sets characterized by varying 
proportions of zeros.

2. Data.

Although more detailed reports would be desirable, currently available data for the 
U.S. purse-seine fleet only include per-set estimates of total tons of tuna discarded. Data 
on size-classes and species composition of this discarded tonnage are not available, nor 
are data available on discards of species other than tuna. This report focuses on data from 
the U.S. fleet only, and does not include direct information about bycatch from the 
considerable number of non-U.S. purse-seiners fishing in the ETP.

Data were collected by National Marine Fisheries Service (NMFS) or Inter-American 
Tropical Tuna Commission (IATTC) observers placed aboard U.S. tuna purse-seiners 
during routine fishing trips to the eastern tropical Pacific Ocean. Each agency provided 
about 50% of the observers; agencies alternated sending observers on departing trips. 
Observers recorded time and position of all sets made by U.S. vessels fishing in the ETP 
during the 31-month “study period” September 1, 1989 - March 30, 1992. Observer 
coverage was 100% during this period. However, bycatch data were available only from 
approximately half of the set records during the period September 1, 1989 - July 30, 1990 
because during this period only IATTC observers were collecting bycatch data. During 
the remaining period (August 1, 1990 - March 30 1992) observers from both agencies * 
recorded bycatch for all sets. The beginning of the “study period” is the first time at which 
both NMFS and IATTC records are available for analysis (prior to this, IATTC data are 
considered proprietary). The end of the “study period” corresponds to the most recent 
complete data that were available at the time when this study was initiated.

Although it would have been desirable to take direct measurements of the weight of 
the bycatch (tons of tuna discarded) for each individual set, this was not feasible. For 
most sets, observers estimated the bycatch by counting the number of brailers (large fish 
baskets) used to empty the net after the set, multiplying this number by an estimated 
tonnage per brailer (based on advice from the fishing captain and other experienced 
crewmen), and then multiplying this estimated total weight caught by the estimated
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fraction of non-target tuna in the catch. Observers estimated this fraction of non-target 
tuna by eye, either by estimating the composition of brailers, or by observing catch sorting 
on deck. Occasionally the majority of the catch was discarded before being brailed 
aboard. In these cases, observers estimated discard by first estimating by eye the weight 
of the total catch, and then estimating the tonnage loaded by brailer. The difference 
between these two estimates (i.e., tons caught minus tons loaded) was the estimated tons 
of bycatch and was assumed to include only discarded tuna.

Observer estimates of bycatch tonnage were apparently rounded to integer values, 
with the rounding interval increasing with the amount of bycatch. For very small amounts 
of bycatch, weights were rounded to the nearest ton so that it was not possible in these sets 
to distinguish observations with no bycatch from those with very small amounts (less than 
one half ton). Increasing difficulty with estimating increasingly large tonnages of bycatch 
apparently contributed to a systematic tendency in the data towards rounding to the 
nearest 5 or 10 tons for small and medium estimates of bycatch and to the nearest 25 or 50 
tons for the large estimates (Figures 1-5). For sets with moderately small amounts of 
bycatch, observer estimates tended to be more precise because the bycatch as well as the 
target fish were brailed aboard the vessel, then sorted on deck where the bycatch could be 
easily compared to the total catch. For sets with large amounts of bycatch, the fish may 
not have been brought on board, making precise estimates more difficult and rounding 
tendencies greater.

The various sources of measurement error and rounding, as described above, introduce 
into our data uncertainty which we did not attempt to account for. In the absence of data 
or studies for “ground truthing” observer estimates of bycatch, or a plausible model for the 
measurement errors, we treated the bycatch weight estimates as exact measurements.

Bycatch was recorded for 59% (2110 of 3590, Table 1) of observed dolphin sets, 76% 
(960 of 1226) of observed schoolfish sets, and 75% (998 of 1328) of observed log sets. 
These sets generated 134, 1098, and 9819 tons of observed bycatch, respectively. The 
relatively small bycatch totals for schoolfish and dolphin sets are due to the large numbers 
of sets of those two types with zero bycatch recorded. Positive tuna bycatch was recorded 
in 65% (650 of 998, Table 1) of log sets with bycatch observed, but in only 8% (80 of 960) 
of schoolfish sets and only 0.7% (10 of 2110) of dolphin sets with bycatch observed. We 
ignored log and school fishing in area 2 in these analyses, because 0 schoolfish sets and 
only 10 log sets (4 with estimated bycatch) occurred in this area (Table 1). We also 
eliminated from the analyses 7 sets in which the entire catch (target catch plus bycatch) 
was lost due to equipment failure.
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TABLE 1. Effort data (numbers of sets) for the U.S. tuna purse-seine fleet fishing 
in the eastern tropical Pacific Ocean, 1989-1992. Geographic areas as defined in 
Federal Register (1989). N is the total number of sets in a given area, n is the 
number of sets with bycatch recorded, and n+ is the number of sets with positive 
bycatch recorded.

Set Type Area N n n+
Dolphin 1 2496 1445 10

2 498 272 5
3 596 393 4

Total 3590 2110 19
Schoolfish 1 399 279 32

2 0 0 0
3 867 681 48

Total 1266 960 80
Log 1 537 326 257

2 10 4 4
3 791 672 393

Total1 1328 998 650

1. Totals for log sets do not include sets in geographic area 2. 
See text for description.

3. Methods.

3.1 Modelling bycatch per set.

The primary difficulty in defining a probability distribution to model bycatch per set 
was sufficient flexibility to describe the disparate distributions observed for the three 
different set types (Figures 1-5). We chose a modified negative binomial distribution, 
known as the negative binomial with added zeros (Johnson and Kotz, 1969), because this 
distribution could accommodate the wide range in the proportion of zero observations, as 
well as the relatively heavy tails in the observed distributions of bycatch for all three set 
types (see Discussion for two other models that we considered but rejected).

The negative binomial distribution with added zeros is a mixture of a negative 
binomial distribution and a discrete probability mass at zero. Under this model, bycatch 
per set is either exactly zero with probability (p) or has a negative binomial distribution 
with probability (1-p). The negative binomial portion of this distribution can be viewed as 
representing strictly positive amounts of bycatch, rounded to integer values. Thus, zero 
values that are part of the negative binomial can be interpreted as observations of small 
amounts of discard, rounded down to zero. Zero values from the probability mass can be
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intexpreted as exact zeros. The probability function for this modified negative binomial 
distribution is

f

Pr{Y = y} = [1]

V

where Y is an individual observation (here, a number of tons of bycatch per set for a given 
set type), (p) is the probability of an observation coming from the “perfect zero” state, 
(1-p) is the probability of an observation coming from the negative binomial state, and (p) 
and (a) are, respectively, the mean and variance parameters of the conditional negative
binomial.

The parameter (a) determines the shape of the distribution. As (a) tends to zero, the 
conditional negative binomial distribution in the mixture tends to a Poisson distribution. 
As (a) increases, the conditional negative binomial becomes more skewed, with a heavier 
tail and higher probability of a zero observation. The parameter (p) is a mixing parameter 
which controls the relative importance of the negative binomial and the probability mass 
at zero. When (p) is one, the distribution is a probability mass at zero. When (p) is zero, 
the probability distribution becomes strictly negative binomial and expected bycatch per 
set is the mean of the negative binomial, (p).

The expected value for individual observations (i.e., mean tons bycatch per set in this 
study) from this probability distribution is

E[Y] = (l-p)p [2]

while the variance of an individual observation is

var[Y] = (l-p)(p +(a+p)p2). [3]
Geographic area, tons of tuna loaded (i.e., commercial catch), time of day, and month 

were all factors which we considered using as potential covariates in the analysis. We did 
not attempt to account for any long-term (i.e., year to year) trend in bycatch rates, because 
our data included too few years for such an analysis.

We included geographic area in the analysis because of obvious differences in 
amounts of bycatch and effort between set types and fishing areas in the data. A priori, we 
selected as geographic strata the three areas (Figure 6) currently used to determine 
comparability of U.S. and non-U.S. dolphin mortality rates (Federal Register, 1989).
These roughly define the major fishing areas in the system. The total numbers of sets 
observed in each area, including sets for which bycatch was not recorded, represent the 
actual areal distribution of fishing effort during the study period. As shown in Table 1, 
however, observation of bycatch was not proportional to this true distribution of total 
effort. In the analysis that follows, it is important to distinguish between the total numbers
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of sets, denoted by N; j, and the numbers of sets for which bycatch was observed, denoted 
by ny. The former define the actual distribution of fishing effort, while the latter simply 
reflect the sample taken. Because our sample of sets with bycatch recorded was not 
proportional to the total effort (Table 1), ignoring area in the analysis could lead to biased 
estimates if the mean bycatch per set differs from area to area for a given set type.

We attempted to include tons of catch loaded in the analysis because it is information 
that might be available from historical data. We did not, however, find any statistically 
significant relationship between tons loaded and bycatch per set (Figure 7), and so none of 
the final parameter estimates depend upon tons loaded.

There are some apparent general relationships between time of day or month and 
bycatch, but we rejected them as potential covariates for two reasons. First, the sampling 
was unbalanced, so that some times and months were over-represented and some under
represented. This unbalance resulted from correlations between set type and time of day 
(e.g., most log sets occurred early in the day), and between area and month (e.g., most 
dolphin sets occurred in area 2 only during July - September). With such strong' 
imbalances in the data, estimates of coefficients for those covariates would be poor. 
Second, neither time of day nor month would have contributed to our primary focus in this 
study, i.e., fishery-wide estimates of mean bycatch for each set type. In contrast to area, 
our sample of sets for which bycatch was recorded did not appear to be biased with respect 
to time of day and month. In the absence of an explicit model for effort as a function of 
those two variables, we assumed that our sample was representative with respect to them. 
Thus, our estimates of mean bycatch, averaged over time of day and month, would be the 
same whether or not those covariates were included. Also, the ultimate goal of this study 
is to predict average annual bycatch (Edwards and Perkins, manuscript in prep.), rather 
than to model bycatch per set in detail as a function of all possible predictors. Including 
such relatively uninfluential covariates would increase prediction error as the available 
information in the data would have to be allocated among more estimated parameters.

We computed estimates of the parameters (p), (ji), and (a) by fitting the model [1] 
separately to data for each of the three set types, using geographic area as a covariate. To 
determine an appropriate dependence upon area for each of the three model parameters, 
we made initial fits for each set type using no areal stratification. We then used stepwise 
likelihood ratio tests to select or reject more complicated models that included areal 
dependence for progressively larger numbers of model parameters. At each step we 
estimated parameter values by maximizing the likelihood of the observed data for each set 
type under the modified negative binomial [1], using a quasi-Newton numerical 
optimization algorithm. We generated all possible models in this procedure and selected 
the simplest model that could not be significantly improved by adding more terms. It 
should be noted that because this is not a linear model, significance levels (i.e. p-values) 
from these likelihood ratio tests are approximate.

We used analytic formulas to compute standard errors for our estimates of the model 
parameters (p), (a), and (|i). These formulas are based on the large-sample normal 
approximation for the maximum likelihood estimates of the parameters. For comparison,
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we also computed bootstrap standard errors; see Discussion for a description of the 
differences.

3.2 Estimating mean bycatch per set

We used Equation [2] and the maximum likelihood estimates for (p) and (ji) from the 
best-fit models to estimate mean bycatch per set for each set type. When the fitted models 
indicated significant areal differences in parameter values (i.e., for school and log sets, see 
Results), we calculated estimates of mean bycatch per set for each individual area. We 
then calculated a “pooled” estimate of mean bycatch per set as the weighted average of the 
area-specific estimates, where weightings were proportional to total effort (number of sets 
including sets for which bycatch was not recorded) in each area. Where no areal 
stratification was appropriate (i.e., for dolphin sets, see Results), we calculated only one 
pooled” estimate from [2] using the likelihood estimate values for (p) and (ji) derived 

from the unstratified model.

For example, mean bycatch per set type (i) in area (j) would be estimated as

E[Yi;j] = (1-pij)fti;j [4]

and the “pooled” estimate for all areas combined would be estimated as

E[Yj]p00jed = 2NjjE[Yjj] / XNjj [5]
j j

where Nj j is the total effort (in number of sets) of type (i) occurring in area (j). Note that 
this “pooled” calculation is based on the proportion of total sets (including those for which 
bycatch was not recorded) observed in each area. This is an estimate of the mean bycatch 
per set over the entire fishery during the study period, but is also valid as a prediction of 
future bycatch under the assumption that the proportion of effort (sets) in each area 
remains constant as the actual number of sets varies.

While Equation [4] provides a straightforward way to compute the MLE for the 
product (l-p)jx, it does require that separate estimates for (p) and (|i) first be computed 
numerically. More importantly, the variance of the product of (1-p) and (ft) can be 
difficult to estimate accurately. It is possible, however, to use the likelihood equations for 
the negative binomial with added zeros to derive simplified forms for the MLE of mean 
bycatch per set. Specifically, only the product (l-p)|i need be estimated, and simple closed 
form expressions that do not involve the individual parameter estimates can be derived 
through algebraic manipulation of the likelihood equations. By the invariance properties 
of maximum likelihood estimates, these simpler forms give results that are identical to 
using [4],

With this closed-form approach, one can show that, with no areal stratification, the 
MLE for the product (l-p)ji is simply the sample mean,
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[6]E[Y] = y = (l/n)Xyk,
k

where the set type subscript (i) is suppressed for clarity. Similarly, with complete areal 
stratification, the MLE for each area reduces to the sample mean in that area, and the 
“pooled” estimate is computed using Equation [5], In both of these cases, the variance for 
the MLE of (l-p)j-i can be estimated very easily, using the sample variance of the data.

When only the mixing probability (p) depends on area (i.e., for schoolfish sets; see 
Results), the MLE for mean bycatch per set in area (j) is slightly more complicated, and 
reduces to

E[Yj] = (nj+/nj) £yk+/n+, [7]
k

where nj+ and nj are the number of positive observations and the total number of 
observations in area (j), yk+ are the positive observations in all areas, and n+ is the total 
number of positive observations in all areas. Similarly, when only the negative binomial 
mean (|l) depends on area, the MLE for mean by catch per set in area (j) reduces to

E[Yj] = (n+/n) Xyj>k+/nj+, [8]
k

where n+ and n are the number of positive observations and the total number of 
observations in all areas, yjk+ are the positive observations in area (j), and nj+ is the total 
number of positive observations in area (j). Again, [5] is used to compute “pooled” 
estimates in these latter two cases. Note that the estimates here for different areas are not 
independent, since both formulae [7] and [8] involve observations from all areas. In 
particular, the first term in [7] is an area-specific estimate of the probability of a positive 
observation, while the second term is a “pooled” estimate of the mean for positive 
observations. This is consistent with the areal stratification on which [7] is based, and 
provides more precise estimates of E[Y] than simply taking the sample mean in each area. 
A similar observation may also be made about [8],

While variance estimates for [6] are easy to obtain, there is no simple analytic result 
for estimating the variance of [7] or [8] (see Discussion for details). However, although 
analytic methods could not be applied effectively for all three set types, bootstrap methods 
can be easily applied in all cases using the previous formulas for the simplified MLEs of 
mean bycatch per set. Thus, we used bootstrap methods rather than analytic methods to 
estimate variances for our estimates of mean bycatch per set.

Bootstrap variance estimates of the estimated mean bycatches per set were computed 
by repeatedly (B = 1000 times) sampling with replacement from the observed data, 
computing bootstrap replicate values of the appropriate estimators, and calculating 
empirical estimates of variance. The resampling procedure varied slightly for each set 
type, depending upon the particular areal stratification chosen for the model parameters. 
When no areal stratification was appropriate, data were resampled across all areas. When
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areal stratification was important, data were resampled by area in the same proportions as 
the original observations.

Specifically, at each iteration the bootstrap procedure either drew nj values from the 
total of nj bycatch observations for set type (i), or drew njj values from the total of n; ■ 
observations for set type (i) in area (j) (see Table 1). From each replicate sample, a 
bootstrap value, y*, was computed using one of Equations [6], [7], or [8], as appropriate, 
and then applying Equation [5] if required. For example, in the case of complete areal 
stratification of the model parameters, the sample mean in area (j) for each replicate 
sample is, from [6],

[6*]

where * indicates a bootstrap selection. We then use [5] to compute the bootstrap replicate 
value as the weighted average of the area-specific sample means,

y* = S[Nj yj*] / XNj [5*]

where Nj is total number of sets in area (j) (including sets without bycatch information 
recorded). Finally, the bootstrap variance for the estimate of mean bycatch per set is 
simply the sample variance of the (B) bootstrap replicates, i.e.,

var(E[Y]) = [X(yb* - (Xyb*)/B)2] / (B-l) [9]b b

This procedure was repeated for each of the three set types.

4. Results.

4.1 Modelling bycatch per set.

Variations in data characteristics led to different models for the three different set 
types. Specifically, we selected different levels of areal stratification in the parameter 
estimates based on the results of likelihood ratio tests. Geographic area was a statistically 
significant predictor of bycatch per set for only two of the three set types (log and 
schoolfish sets).

Positive bycatch from dolphin sets occurred so infrequently that separate models for 
each geographic area were not statistically tenable. Geographic area, when included as a 
covariate, failed to produce a significant improvement in the fit, and so for this set type, we 
selected the model with no areal dependence for any of the parameters. Thus, the 
estimates for each of the three parameters (p), (a), and (p) in this case are fishery-wide 
values (Table 2). The standard error of the mixing parameter (p) for the dolphin model is 
very small, reflecting the high mixing probability dictated by the extremely large number 
of zero observations of bycatch. The standard errors of the parameters for the negative
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binomial portion of the probability distribution ((a) and (|n)) are quite large, reflecting the 
few positive^ 19 out of 2110 sets, Table 1) data available for their determination (seeDiscussion).

At the other extreme, positive bycatch observations were frequent enough for log sets 
t at completely separate, statistically independent models could be developed for 
geographic areas 1 and 3. In this case, the estimated probability distributions effectively 
collapsed to an unmodified negative binomial in both areas. Specifically, the numerical 
optimization failed to converge to a positive value for (p), producing a maximum 
likelihood estimate of zero for (p) in both areas (Table 2). Using fishing area as a 
covariate for both the mean (u) and the shape (a) parameters improved the fit significantly 
(p-value less than 0.001) over simpler models pooling across areas. Because positive 
o servations were so abundant, estimated standard errors for the mean and shape 
parameters (Table 2) were quite small (see Discussion).

ycatch from schoolfish sets presented an intermediate case, in which we selected a 
model which included marginally different maximum likelihood estimates for the mixing 
probability (p) in areas 1 and 3, but no geographic stratification for the other two 
parameters, (a) and (p.) (Table 2). There were considerably fewer (80) positive 
observations for schoolfish sets than for logfish sets, making precise parameter estimation 
much less likely. Likelihood ratio tests indicated that fishing area should be included as a 
covariate for either the shape parameter (a) or the mixing probability (p). The 
approximate p-value for adding areal dependence to the shape parameter was 0 04 while 
that for the mixing probability was 0.12. These two parameters are similar in the effect 
t ey have on the estimated distribution. Increasing either one increases the probability of 
a zero observation, although increasing (a) also increases the probability of a large 
observation. Including areal dependence for both parameters simultaneously or for the 
mean, did not significantly improve the fit. We chose to include areal dependence only for 
the mixing probability for two reasons. First, the small number of positive observations 
for schooifish sets limits the precision of the shape estimate (see Discussion). Second, the 
difference m the estimated shape between areas was largely due to two unusually large 
observations in area 3. Without these two observations, the difference in estimated shapes 
was reduced, and the significance levels of the two different models were nearly equal 
(approximate p-values of 0.09). As was the case for dolphin sets, the predominance of 
zeros in the schoolfish bycatch data set led to small estimated standard errors for the
mixing probability (p) but to large estimated standard errors for the mean and shape 
parameters. ^

e estimates for the mixing probability parameter (p) for the three set types imply 
that essentially all dolphin sets (98%) involve no bycatch at all, while log sets always 
involve some bycatch, although frequently in small amounts. This conclusion is based on 
the interpretation of zeros derived from the two components of the probability model 
which we fit (see Discussion for more implications of this inteipretation). Observer 
experience indicates that this result is consistent with observed patterns for dolphin and
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The estimated shape parameters varied widely for the three set types (Table 2). 
However, because of the large standard error estimates for the schoolfish and dolphin 
shape parameters, it is not possible to make any strong statements regarding shape as a 
function of set type from these data. As mentioned above, the estimated shape parameter 
for schoolfish sets was strongly affected by the presence of two unusually large 
observations (100 and 125 tons of bycatch) in area 3. Repeating the analysis without these 
two observations led to a shape estimate of 3.75 (s.e. = 2.10), more similar to those for log 
sets.

TABLE 2. Maximum likelihood parameter estimates for the negative binomial 
with added zeros fit to tuna bycatch data from the U.S. tuna purse-seine fleet 
fishing in the eastern tropical Pacific Ocean, 1989-1992. See text for a description 
of the parameters and geographic areas. Estimates of standard error appear in 
parentheses.

Dolphin Sets Log Sets Schoolfish Sets

Area 1 Area 3 Area 1 Area 3
p .982 (.015) 0(0) 0(0) .715 (.182) .825 (.111)
a 3.87 (5.36) 2.34(0.19) 3.93 (0.25) 7.20 (6.28)
p 3.53 (3.21) 15.4(1.3) 7.09 (0.55) 5.53 (3.60)

4.2 Estimating mean bycatch per set.

Since the model we fit for log set bycatch reduced to a simple negative binomial 
distribution (with p = 0), the estimates of mean bycatch per log set in each fishing area are 
just the corresponding mean parameters (|ij). Mean bycatch per schoolfish or dolphin set 
was estimated using Equation [4].

Estimates of mean bycatch per log set were an order of magnitude larger than for 
schoolfish sets and two orders of magnitude higher than for dolphin sets (Figure 8). Most 
of this difference is due to the wide range in the estimated proportion of sets with zero 
bycatch. By comparison (Table 2), estimated mean parameters for the negative binomial 
component of the model differ by less than a factor of five. Thus, the model that we fit 
indicates that on average, there is a considerable difference among set types in per-set 
bycatch, although for sets in which bycatch actually occurs, there is comparatively less 
difference in the amount.

Mean bycatch for log sets was estimated at 10.5 tons per set pooled over areas, ranging 
from 7.1 tons per set in area 1 to more than double that value (15.4 tons per set) in area 3 
(Figure 8). Mean bycatch for schoolfish sets was estimated at 1.16 tons per set pooled 
over areas, ranging from 1.57 tons in area 1 to 0.97 tons in area 3. Mean bycatch per set 
for dolphin sets was estimated at 0.06 tons per set fishery-wide. Implications of these 
results for the fishery are discussed in another study (Edwards and Perkins, in prep.).

1. personal communication, A1 Jackson, S WFSC
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The coefficients of variation (c.v.’s) for the estimates of mean bycatch per schoolfish 
and dolphin sets (21% and 33%, respectively) are dramatically smaller than those for the 
individual parameter estimates of (a) and (p) (Figure 9). This is because estimating mean 
bycatch per set (i.e., (l-p)p) is a more robust procedure than estimating the individual 
parameters; see Discussion for a full description. In the case of log sets, the c.v.’s for the 
estimates of E[Y] and (fl) differ (Figure 9), even though in this case, the model reduced to 
a negative binomial distribution where E[Y] = p. The c.v.’s differ because, in estimating 
variances for the individual parameter estimates, we used analytic approximations, while 
in estimating variances for mean bycatch, we used bootstrap methods (see Methods). For 
a more detailed description of the differences, see Discussion.

Note that the fishery-wide estimates for log and schoolfish sets are not simply the 
average of the estimates in each fishing area. This is because the number of sets in each 
area for which bycatch was recorded was not proportional to the actual number of sets 
made in that area. This imbalance was an important reason for including geographic area 
in the analysis. Non-proportional sampling was not a factor for dolphin sets, as the 
estimated bycatch in that case was the same for all fishing areas.

5. Discussion.

5.1 Estimating model parameters and mean by catch.
It can be shown from the likelihood equations for the negative binomial with added 

zeros that estimates for the parameters (a) and (p) depend solely on the positive 
observations in the data. The estimate for the parameter (p) depends on all the data, but is 
strongly dependent on the proportion of zero observations. Thus, the precision of the 
estimates for (a) and (p) can be very poor if the data contain few positive observations, 
while the precision of the estimate for (p) may still be very good. This was the case in our 
model parameter estimates for dolphin sets, and, to a slightly lesser degree, schoolfish 
sets. This same observation also applies to the estimate of mean bycatch per set, (l-p)p. 
The estimate of this product is more robust than estimates of the individual parameters 
involved in it, because it does not depend solely on either the positive observations or the 
proportion of zeros.

5.2 Estimating variances for model parameter estimates.
The analytic approximation formulae that we used to estimate the variance of the 

individual parameter estimates are based on the asymptotic normality of maximum 
likelihood estimates. Specifically, for each set type, we derived the expected Fisher 
information matrix as a function of the model parameters (p), (a), and (p), and then 
calculated the inverse of this matrix evaluated at the MLEs of those parameters. We then 
took the diagonal elements of this inverse matrix as estimates of the variances of the 
parameter estimates. Since this method uses the MLEs for (p), (a), and (p) (rather than 
using their unknown “true” values) in the information matrix, it suffers from the well-
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known (e.g., Efron, 1992) but unavoidable tendency for ML estimates of variance to be 
biased downwards. We did not attempt to “bias correct” these variance estimates.

In addition to the analytic formulas described above, we attempted to use bootstrap 
methods to estimate variances for the model parameters (p), (a), and (ji). Bootstrapping 
can be more robust in that it does not require any assumptions beyond the sample being 
representative of the underlying process. However, we could not use the method 
effectively for dolphin sets because there were so few sets observed with positive bycatch 
recorded (19 out of 2110 sets for which bycatch was recorded; Table 1). In resampling for 
the bootstrap, approximately one third of the samples contained too few positive 
observations for the maximum likelihood algorithm to converge. However, results from 
bootstrapping can be used to shed light on the validity of the normal approximation 
implicit in the standard errors which we report.

Histograms of dolphin set parameter estimates for the bootstrap samples that did 
converge were very skewed (Figure 10). By implication, the normal-approximation 
variance estimates for the dolphin data, while convenient, are probably not very 
satisfactory. For schoolfish data, bootstrap estimates of standard error were consistently 
higher than the analytic approximations, indicating that the latter may be optimistic. 
Histograms of the bootstrap replicate parameter estimates in this case were slightly 
skewed, due to a small number of unusually large observations. For log sets, bootstrap 
standard errors were very similar to those from the analytic approximations, and the 
corresponding histograms were close to normality. The analytic estimates in this case are 
probably appropriate.

One alternative to bootstrapping in this case might be the use of likelihood intervals. 
This method provides an analytic means of estimating the precision of parameter 
estimates when the assumptions required for the information matrix approach are 
questionable. These intervals do not assume normality of the MLEs, and are not 
necessarily symmetric about the estimates. However, for large numbers of parameters, 
calculating likelihood intervals can be computationally difficult.

5.3 Estimating variances for mean bycatch per set estimates.
In an attempt to derive analytic formula for the variance of our estimates of E[Y], we 

manipulated the likelihood equations for the negative binomial with added zeros and 
found simplified forms for the MLE of E[Y], In some cases, the simplified form reduces 
to the sample mean, Equation [6], and the variance of that estimator is simply (suppressing 
area and set type subscripts for simplicity)

var(E[Y]) = (l/n)E[Y] = (l/n)(p+ap2), [10]

which can be estimated by substituting in MLEs for (a) and (p). More simply, using the 
fact that the estimator is just the sample mean, the minimum variance unbiased estimate of 
[10] is the sample variance,
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var(E[Y]) = [2:(yi-y)2]/(n-l),
[11]

where y is the sample mean. In other cases, the simplified forms for the MLE of E[Y1 are 
slightly more complex (Equations [7] and [8]), and Equations [10] and [11] no longer 
apply. It is possible to derive expressions, analogous to Equation [10], for the variance of 
Equations [7] and [8] in terms of the three model parameters (p), (a), and (p). However 
these formulas are so complex as to be of no practical use in estimation, and no expression 
analogous to Equation [11] seems possible.

Thus, for consistency, we used bootstrap methods in all cases. However, when 
possible (i.e., log and dolphin sets), we also estimated variances using Equation [11], and 
found that the two sets of results agreed to within about 5%. Likelihood intervals may 
also be feasible for estimating precision in this case.

We did not encounter the problem discussed in Section 5.2 (i.e., too few positive 
observations in the case of dolphin sets) when bootstrapping variance estimates of mean 
bycatch per set. As discussed in Section 5.1, estimates for mean bycatch per set (l-p)tt do 
not depend solely on positive observations.

5.4 Rounding errors in the observations.

The model used in this study, the negative binomial with added zeros, is comprised of 
two probabilistic components. As noted in Section 3.1, zero values derived from the 
negative binomial component can be interpreted as observations of small amounts of 
discard, rounded down to zero, while zero values from the probability mass component 
can be interpreted as exact zeros. This interpretation is based on the assumption of an 
underlying continuous distribution for positive discard amounts (e.g., a gamma 
distribution), upon which rounding errors have been superimposed.

One consequence of this interpretation is that the mean amount of bycatch that should 
be associated with “perfect” zeros is zero tons, while the mean amount that should be 
associated with “negative binomial” zeros is nonzero. Thus, strict adherence to this 
inteipretation of zeros leads to the conclusion that Equation [4] may be an underestimate 
o [ Y], However, if we assume a strictly decreasing underlying distribution for positive 
bycatch, symmetric rounding of amounts larger than one half ton would tend to increase 
the estimate. In the absence of a specific model for the rounding errors, we did not attempt 
to correct for any bias due to rounding.

5.5 An alternative algorithm for maximizing the likelihood.
To maximize the likelihood for the individual model parameters (p), (a), and (p) we 

used a quasi-Newton maximization algorithm. An alternative method available for ’ 
mixture models (e.g., McLachlan and Basford, 1988; Lambert, 1992) uses the EM 
aigonthm to maximize the likelihood. This method is generally applicable to distributions 
with added zeros. In situations with many covariates for the mixing probability (p) and 
conditional mean (p) parameters, it provides an alternative to the high-dimensional
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gradient search required by standard numerical optimization algorithms. The algorithm 
can be implemented using standard regression techniques for generalized linear models.

We applied the EM algorithm to the negative binomial with added zeros, using a 
combination of logistic regression to maximize likelihood for (p) and a quasi-likelihood 
negative binomial regression for (a) and ftt) (Lawless, 1977). This algorithm assumes a 
constant shape parameter (a), although it may also be possible to modify the method when 
(a) depends on one or more categorical or continuous covariates. However, this approach 
was not successful for the current data set because the logistic regression for the mixing 
probability failed to converge, since, in the case of log sets, the ML estimate for (p) was 
zero.

5.6 Alternative models considered.

For this analysis, we used the negative binomial with added zeros to model per-set 
bycatch. We considered but rejected two alternative models: the A-distribution (a mixture 
of a probability mass at zero with a lognormal (Aitchison, 1955; Pennington, 1983)), and a 
gamma distribution mixed with a probability mass at zero (Coe and Stem, 1982). Both 
models have been used in similar cases where the data to be analyzed have contained large 
numbers of zeros. We rejected these models for this study because both were unsuited to 
our data. The A-distribution assumes that the natural logs of the positive observations are 
distributed normally, or can be so transformed, and this assumption was not plausible.
The data in this analysis were rounded to the nearest ton and the mode of the positive 
observations was at one ton. Thus, no transformation could bring these data to even 
approximate normality. The gamma mixture model was not appropriate for the current 
data because maximum likelihood estimation for a highly skewed gamma distribution 
depends heavily upon small (near zero) observations. In this study, all observations in that 
region were rounded to either zero or one, implying a large relative measurement error, 
and therefore potentially poor accuracy. Another more fundamental reason why we 
rejected these two models was that both models mix a continuous distribution on the 
positive numbers with a probability mass at zero, and assume that observations from each 
component remain distinguishable. In the current data set, small positive observations are 
grouped together with zero observations, and using a negative binomial in the mixture 
allows the model to distinguish between “true zeros” (actual absence of bycatch) and 
rounded zeros (bycatch so small that it was ignored or missed).

5.7 Conclusions.

The methods developed here were used to model fisheries bycatch data which were 
rounded to integer values and which included widely varying numbers of zero 
observations, depending on one or more covariates. The usual models for integer-valued 
data, e.g. the Poisson distribution, did not fit the current data at all well because of the 
extreme skewness of some of the observed distributions. The negative binomial with
added zeros is more flexible than the standard models, and provided a much better fit to 
the current data.
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Modelling these data with a parametric probability distribution allowed us to describe 
patterns in the bycatch in some detail, for example, estimating the percentage of “true 
zeros” vs. “rounded zeros”. In contrast, computing non-parametric estimates of mean and 
variance would not give any indication of the patterns in the individual observations. 
While average or total bycatch is of significant interest, it is also important to quantify the 
amount of bycatch possible for an individual set. Assuming that the parametric model is 
accepted as appropriate, one can estimate, for example, what the probability is that, due to
random chance alone, bycatch from a particular boat will exceed a certain limit in a fixed 
number of sets.

Modelling the data in a regression framework allowed us to test for dependence of the 
model parameters upon the covariates. In turn, dependencies of the model parameters 
were transformed into statements about the mean bycatch per set as a function of set type 
and geographic area. In particular, we were able to incorporate areal dependence into our 
estimates of mean bycatch per set only when appropriate. Additionally, we were able to 
distinguish whether differences in mean bycatch were due to differences in the proportion 
of zero observations, or due to differences in the distribution of positive observations.

In this report we modelled data from observations of fisheries bycatch, however the 
model is more generally applicable to integer-valued data which exhibit a large proportion 
of zero observations combined with long positive tails. Both categorical or continuous 
covariates may be incorporated into the model.
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FIGURE 1. School set discards in area 1. 
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FIGURE 2. School set discards in area 3. Two observations larger than 100 tons not 
shown. Bars indicate observed frequencies, lines indicate fitted frequencies.
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FIGURE 3. Dolphin set discards in all areas, 
lines indicate fitted frequencies. Bars indicate observed frequencies,
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FIGURE 4. Log set discards in area 1. Ten observations larger than 100 tons not 
shown. Bars indicate observed frequencies, lines indicate fitted frequencies.
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FIGURE 5. Log set discards in area 3. Three observations larger than 100 tons not 
shown. Bars indicate observed frequencies, lines indicate fitted frequencies.
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FIGURE 6. Geographic strata used in developing models to estimate mean bycatch
?nonCt ^°r tuna Purse-seine fleet fishing in the eastern tropical Pacific Ocean
1989-1992 (Federal Register, 1989).
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FIGURE 7. (Lack of) relationship between tons of tuna bycatch and tons of tuna 
loaded for the U.S. tuna purse-seine fleet fishing in the eastern tropical Pacific Ocean,
i non 1 ftA'i r *
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FIGURE 8. Estimated mean tuna bycatch per set for the U.S. tuna purse-seine fleet 
fishing in the eastern tropical Pacific Ocean, 1989-1992. Geographic areas as defined 
in Federal Register (1989). Pooled estimates are fishery-wide, across all areas. 
Standard errors indicated by error bars.
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FIGURE 9. Coefficients of variation for estimates of the model parameters (p) (a) 
and Qi), and for estimates of mean bycatch per set for the U.S. tuna purse-seine fleet 
fishing in the eastern tropical Pacific Ocean, 1989-1992. Geographic areas as defined 
in Federal Register (1989). Pooled estimates are fishery-wide, across all areas.
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FIGURE 10. Sample histograms of 1000 bootstrap replicates of estimates of the 
negative binomial parameter (p), for dolphin, schoolfish, and log sets. See text for a 
description of the parameter.
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